

Q: Classification in several seems out of reach. So what about just for some "simpler" functions?

A: Yes, e.g. for monotone functions.

 $Def^d: Let f: A \rightarrow R$. We say that

 (i) f is (strictly) increasing if the following holds: k C k $X_1, X_2 \in A \cup X_1 \leq X_2 \implies f(X_1) \leq f(X_2)$

(ii)
$$
f
$$
 is (strictly) decreasing if the following holds:

\n(3)

\n(4)

\n(5)

\n(6)

\n(7)

\n(8)

\n(9)

\n(1, X₂ \in A & X₁ \le X₂ \implies f(X₁) \ge f(X₂)

(iii) f is (strictly) monotone if it is either (strictly) increasing I decreasing.

GOAL: Monotone functions on [a.b] ONLY have "jump discontinuities".

We shall need the notion of "1-sided limits".

 $Def¹: Let $f: A \rightarrow \mathbb{R}$ and $C \in \mathbb{R}$ is a cluster point of $An(c, \infty)$.$ $\lim_{x\to C^{+}} f(x) = L$ iff $\forall \xi > 0$, $\exists S = \delta(\xi) > 0$ st.
 $\forall f(x) = L | \le \epsilon$ whenever
 \therefore right-hand limit $|f(x) - L| < \epsilon$ whenever $x \in A$ and $0 < x - c < S$ Remark: We can define similarly $\frac{lim}{x} f(x) = \square$.

We have X_{Σ} < $X \subset C$, and hence $C \cdot f$ increasing) sup fix) = ϵ < $f(x_i) \le f(x) \le \sup x \epsilon(a,c)$ $x \in [a,c]$ $x \in [a,c]$ b L'Or: Same assumption as in Thim. THEN: $f(x)$ at $C \in (a, b)$ \iff $\sup_{x \in (a, c)} f(x) = f(c) = \inf_{x \in (c, b)} f(x)$ $X \in [a.c)$ $Def:$: Let $f:[a,b]\to\mathbb{R}$ be an increasing function $A\subset\mathcal{C}(a,b)$. Define the jump of ^f at ^c to be $\oint_{\mathbf{f}}(c) := \lim_{x \to c^*} f(x) - \lim_{x \to c^*} f(x)$ $\frac{Nstx}{dx}(c) \ge 0$ and "=" holds $\zeta = 0$ f is cts at c Thur: Let $f: [a, b] \rightarrow \mathbb{R}$ be an increasing function. THEN, the set of $C \in [a.b]$ st f is discontinuous at C is at most countable. ie. 3 only at most countablymany jump discountinute for a monotone fan. O **The Company of the Company** T

a b

Proof: Denote the set of discountinuty Note $D = \{ c \in (a, b) | \hat{\mathfrak{z}}_f(c) > 0 \}$ $j_{f}(c) \leq f(b) \cdot f(a)$ Consider the subsets $D_1: = \{ C \in (a, b) \mid d_1(c) > f(b) - T(a) \}$. # $D_1 \le 1$ D_2 : = { C E (a.b) | $\hat{d}_f(c)$ > $f(b)-f(a)$ } + $D_2 \le 2$ $D_k = \{ C \in (a.b) | \partial_f(c) > \frac{F(b) - T(a)}{k} \}$. # $D_k \le k$ $\ddot{}$ Then $D = U D_k$ hence is at most countable k = 1 D

Existence of inverse Consider a $cts f : [a.b] \rightarrow R$. $M := \int \frac{1}{M} \mathbf{f}(x)$ $EVT \Rightarrow$ $x \in [a, b]}$ are achieved $M := sup f(x)$ x cCadd combine with IVT, $f([a.b]) = [m.M]$ Q : When does the inverse f' : [m, M] \rightarrow [a.b] exist? Thin: If $f: [a, b] \to \mathbb{R}$ is strictly increasing $\mathcal R$ cts, then $f': Em.M] \rightarrow [a.b]$ exists, and strictly increasing & cts.

$$
\frac{\text{Sketch of Proof: } 8y}{\text{f: [a,b] \rightarrow [m,N]}} \text{ if } \frac{1.1}{1.1} \text{ and } \frac{1.01}{1.01} \text{ and } \frac{1.01}{1.01} \text{ is 34. } 5 \text{ if } \text{cuts.}}.
$$
\n
$$
\frac{\text{Chain: } 4^{\frac{1}{3}} \text{: [m,N] \rightarrow [a,b] \rightarrow [a,b] \rightarrow [a, \text{end}]}}{\text{If: [a,b] \rightarrow [a,b] \rightarrow [a,b] \rightarrow [a, \text{end}]}} = \frac{\frac{91.916}{1.01916} \text{Inm, 1)} \text{ and } \frac{91.916}{1.01916} \text{For } \text{[m, 1] \rightarrow [a, \text{end}]}}{\text{Suppose } f(x_1) = 91. } \text{Suppose } f(x_1) = 92. } \text{Suppose } f(x_1) = 93. } \text{Suppose } f(x_1)
$$

